US009405697B2

a2 United States Patent 10) Patent No.: US 9,405,697 B2
Koo et al. (45) Date of Patent: Aug. 2, 2016
(54) MEMORY MANAGEMENT METHOD AND (58) Field of Classification Search
APPARATUS None
See application file for complete search history.
(71) Applicant: Samsung Electronics Co., Ltd.,
Gyeonggi-do (KR)
(56) References Cited
(72) Inventors: Jin Kyu Koo, Gyeonggi-do (KR);
Sang-Bok Han, Gyeonggi-do (KR): U.S. PATENT DOCUMENTS
Myung Sun Kim, Gyeonggi-do (KR); In 7,017,024 B2* 3/2006 Arimilliccc..o.... GOGF 12/08
Choon Yeo, Gyeonggi-do (KR) 711/104
2005/0055528 Al* 3/2005 Arimilli GOGF 12/0866
(73) Assignee: Samsung Electronics Co., Ltd., 711/203
Suwon-si (KR) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Brian Peugh
U.S.C. 154(b) by 225 days.
(21) Appl. No.: 14/307,371 (57 ABSTRACT
(22) Filed: Jun. 17, 2014 A methoq for managing memory using a V1rtga1 memory
manager includes receiving a memory allocation request,
(65) Prior Publication Data allocating memory of a physical address space in response to
the memory allocation request, mapping an address value of
US 2014/0372726 A1~ Dec. 18, 2014 the memory allocated in the physical address space to con-
. L L. secutive primary virtual address space, and mapping the
(30) Foreign Application Priority Data address value of the primary virtual address space to one of a
first and second secondary virtual address spaces to process a
Jun. 17,2013 (KR) .ocevevveereiiene 10-2013-0069214 new memory allocation request in a situation where memory
51) Int. CI a fragmentation occurs. Other embodiments are also dis-
Gh Gn 0;$F 1 200 2006.01 closed. The methods and apparatuses of the present disclo-
GOGF 12/10 (2016.01) sure are capable of moving active memory blocks of the
GOGF 12/02 (200 6. 0 l) fragmented virtual memory space to another virtual memory
(52) US.Cl (0D) space to resolve the memory fragmentation even when a
e de memory fragmentation occurs.
CPC GO6F 12/10 (2013.01); GO6F 12/0253
(2013.01); GOG6F 12/0292 (2013.01); GO6F
12/109 (2013.01) 20 Claims, 10 Drawing Sheets
300~ N byte PHYSICAL ADDRESS SPACE
510 N byts PRIMARY VIBTUAL ADDRESS SPACE
520
L
w ~a, r—""SECONDARY VIRTUAL ADDRESS SPACE
521 i bvte I byte _T529

US 9,405,697 B2

Sheet 1 of 10

Aug. 2, 2016

U.S. Patent

NOILY INIWISYHA AHOWIW

NOLLY30TY ¥0078 AHOWIN

30vdS SSIHOQY TIISAHd

~—{01

1303 NOLLYOOTY alfq e
3SYA134 NOLLYOOTHY
]
Z 7 %
i il e 4 a0l ot
— — f =N —
7 0
!
810 e
T "OId

~—001

~ 002

U.S. Patent Aug. 2, 2016

210
L

Sheet 2 of 10

FIG. 2

CONTROL UNIT

220
L

200

US 9,405,697 B2

MEMORY

VIRTUAL MEMORY MANAGEMENT LINIT
DYNAMIC ALLOGATION MEMORY

GENERATOR d
LOCATION CHECKER f—_ " |
STATE CHECKER |1
STORAGE |1
CONTROLER |-
IEMORY INTERFACE]
MEMORY MANAGER [

-~230

231

232

233

231

235

236

237

US 9,405,697 B2

Sheet 3 of 10

Aug. 2,2016

U.S. Patent

1S3N03H NOLL¥D0TIY

NOILY INFWTYH 309dS SSTHOOY TYNIHIA

10¥dS SSIHOGY TYNIHIA

10vdS SSHOAOY T¥IISAHd

140 He
ISR NOLYOOTH
% 7w
e BlE { e e
R
" f
TN wan) aan [0 e
ol b el o &
€ "Old

US 9,405,697 B2

Sheet 4 of 10

Aug. 2, 2016

U.S. Patent

MO0Td AHDIIW CILYI0TIVRIN

[]

Y0018 AHOREN LYY
it 00y
[
b SMaWE SR RN e 8140 g
ni-ho| ol SR e a0 g

LOH29]109 Jayy

UDna9Yi09d 310434

YNy

L

QMg Y YN Y
oy 4 i _ﬁ
BIAG g | [e n (B svan 3090 avaw
0
\'\
iy 00y

US 9,405,697 B2

Sheet 5 of 10

Aug. 2, 2016

U.S. Patent

2261 9 N 810 N N
30YdS SSIHAOY TWNLHIA AHYONDDIS ~_ e m
- _
028
39VdS SSTHOOY TWLHIA AHYIIN 810 il 018
-
10%dS SSIHOTY TWISAHd a1fg N ~-008
G "Hid

US 9,405,697 B2

Sheet 6 of 10

Aug. 2, 2016

U.S. Patent

Y0018 AUON3H GLYO0TINN D
YOUTE AHOWEN LY [

w3 T VA L L T 17 b

N T

Dig—88

Nz

w

&

8 o \\®§ 4 g&

1ibRJaj{ed sy

w3 |0 [0 |8 | |7 0 A7 o 7%

) s

Nz 7

9 "OId

148

uondelos alojeq

US 9,405,697 B2

Sheet 7 of 10

Aug. 2, 2016

U.S. Patent

1Y NOILYIHOIN DNIddyi

J Y G08

d elg €09

Y 118 109
SSIHA0Y TVNIHIA AHYONDIIS | SSIHOOY TYNLHIA AHYIIEd | SSIHOOY TWOISAHd

9 a8 09

J E19 09

B 19 109
$S3H00Y TYRLYIA AHYONDDIS | SSIHOLY TWNIHIA A4y | SSIHOQY TWOISAHd

L 914

US 9,405,697 B2

Sheet 8 of 10

Aug. 2,2016

U.S. Patent

Vs

@/ i

6088

LBS ™

10dS INFHHNT NI N3018 AHOREME MM 3LYI0TIY

8

13vdS SSIHOAY TeLIHIA
AHVONGIAS E3HI0 01 80078 JAILOY JACH

cH390 NOILYIHNOYHS AHONN

GBS~

0VdS SS3400Y TYNLHIA AHYONGDIS
01 33¥dS SSTAOY TWNIHIA ALY dYIN

&

E08S

J0VdS SSIOOY TWNLHIA AdYiIHd
01 30¥dS SS3400Y TWIISAHd dyll

&

10BS

1S3N03H NOLLYOOTIY AHOWIR IAB03

g DI

&

1HyIS

U.S. Patent Aug. 2, 2016 Sheet 9 of 10 US 9,405,697 B2

FIG. 9

(STRT)

SO01— =< ACTIVE MEMORY BLOCK EXIST?

g DETERMINE NEW ADDRESS TO BE GIVEN
803~ T0 ACTIVE MEMORY BLOCK
- MAP DETERMINED ADDRESS TO PRIMARY

91" VIRTUAL ADDRESS OF CORRESPONDING MEMORY BLOCK

'
CEND}

U.S. Patent

405,697 B2

Aug. 2, 2016 Sheet 10 of 10 US9,
FIG. 10
START
RECEIVE MEMORY ALLOCATION REQUEST |~ s1001
Y
ALLOCATE BLOCK GREATER THAN
REQUESTED MEMORY SIZE 51003
§1005
v ALLOCATION RENUEST IS AGTIV _ND
e BLOCK TRANSFER REQUEST pmme=
$1007 $1000
) ¥ ~

UPDATE SECONDARY VIRTUAL ADDRESS
MAPPING INFORMATION

REGISTER MAPPING INFORMATION
WITH MAPPING TABLE

US 9,405,697 B2

1
MEMORY MANAGEMENT METHOD AND
APPARATUS

CROSS-REFERENCE TO RELATED
APPLICATION AND CLAIM OF PRIORITY

The present application is related to and claims the benefit
under 35 U.S.C. §119(a) of a Korean patent application No.
10-20130069214 filed on Jun. 17, 2013 in the Korean Intel-
lectual Property Office, the entire disclosure of which is
hereby incorporated by reference.

TECHNICAL FIELD

The present disclosure relates to a method and apparatus
for solving memory fragmentation problem of an electronic
device and, in particular, to a method and apparatus for man-
aging virtual memory using a virtual memory manager.

BACKGROUND

With the advance of technologies, recent electronic devices
come with various features. For example, a mobile terminal is
equipped with various multimedia functions including Tele-
vision function (e.g. Digital Multimedia Broadcasting
(DMB) and Digital Video Broadcasting (DVB)), music
player function (e.g. MPEG Audio Layer-3 (MP3)), camera
function, Internet access function, dictionary function, etc. in
addition to the basic communication function such as voice
telephony and messaging functions. With the diversification
of multimedia functions, the memory request for executing
the functions increases and thus inefficient memory manage-
ment is likely cause failing program execution.

Particularly, the memory fragmentation causes waste of
memory, resulting in failure of utilizing available memory for
operation of the program. The memory fragmentation
describes a state in which a plurality of memory fragments
occur in the process of allocating and withdrawing memory to
and from the programs repeatedly without use due to their
sizes smaller than that required by the processor.

SUMMARY

To address the above-discussed deficiencies, it is a primary
object to provide an enhanced memory management method
and apparatus. Also, the present disclosure provides a method
for managing the memory using a virtual memory. Also, the
present disclosure provides a memory management method
using secondary virtualization. Also, the present disclosure
provides a memory management method and apparatus
capable of mitigating memory fragmentations in such a way
of configuring two secondary virtual address spaces and,
when one of address spaces is fragmented, moving the active
memory blocks to the other address space.

In accordance with an aspect of the present disclosure, a
memory management method of an electronic device is pro-
vided. The memory management method includes receiving a
memory allocation request, allocating memory of a physical
address space in response to the memory allocation request,
mapping an address value of the memory allocated in the
physical address space to consecutive primary virtual address
space, and mapping the address value of the primary virtual
address space to one of a first and second secondary virtual
address spaces to process a new memory allocation request in
a situation where a memory fragmentation occurs.

In accordance with another aspect of the present disclo-
sure, an electronic device having a memory is provided. The

10

15

20

25

30

35

40

45

50

55

60

65

2

electronic device includes a memory unit which stores at least
one data and a virtual memory management unit receives a
memory allocation request, allocating memory of a physical
address space in response to the memory allocation request,
maps an address value of the memory allocated in the physi-
cal address space to consecutive primary virtual address
space, and maps the address value of the primary virtual
address space to one of a first and second secondary virtual
address spaces to process a new memory allocation request in
a situation where a memory fragmentation occurs.

Before undertaking the DETAILED DESCRIPTION
below, it may be advantageous to set forth definitions of
certain words and phrases used throughout this patent docu-
ment: the terms “include” and “comprise,” as well as deriva-
tives thereof, mean inclusion without limitation; the term
“or,” is inclusive, meaning and/or; the phrases “associated
with” and “associated therewith,” as well as derivatives
thereof, may mean to include, be included within, intercon-
nect with, contain, be contained within, connect to or with,
couple to or with, be communicable with, cooperate with,
interleave, juxtapose, be proximate to, be bound to or with,
have, have a property of, or the like; and the term “controller”
means any device, system or part thereof that controls at least
one operation, such a device may be implemented in hard-
ware, firmware or software, or some combination of at least
two of the same. It should be noted that the functionality
associated with any particular controller may be centralized
or distributed, whether locally or remotely. Definitions for
certain words and phrases are provided throughout this patent
document, those of ordinary skill in the art should understand
that in many, if not most instances, such definitions apply to
prior, as well as future uses of such defined words and
phrases.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclo-
sure and its advantages, reference is now made to the follow-
ing description taken in conjunction with the accompanying
drawings, in which like reference numerals represent like
parts:

FIG. 1 is a diagram illustrating memory fragmentations;

FIG. 2 is ablock diagram illustrating a configuration of the
electronic device according to an embodiment of the present
disclose;

FIG. 3 is a diagram illustrating a memory management
scheme using virtual memory according to an embodiment of
the present disclosure;

FIG. 4 is a diagram illustrating a concept of managing
memory in the virtual address space according to an embodi-
ment of the present disclosure;

FIG. 5 is a diagram illustrating a concept of memory man-
agement method using 2-step virtualization according to an
embodiment of the present disclosure;

FIG. 6 is a diagram illustrating a concept of the active block
mapping method of FIG. 5;

FIG. 7 is a diagram illustrating a mapping table for use in
the embodiment of FIG. 6;

FIG. 8 is a flowchart illustrating the memory management
method based on the concept depicted in FIG. 5;

FIG. 9 is a flowchart illustrating a procedure of moving
active blocks in the memory management method of FIG. 8;
and

FIG. 101s a flowchart illustrating the memory management
method when new memory allocation request is received in
the memory management concept of FIG. 5.

US 9,405,697 B2

3
DETAILED DESCRIPTION

FIGS. 1 through 10, discussed below, and the various
embodiments used to describe the principles of the present
disclosure in this patent document are by way of illustration
only and should not be construed in any way to limit the scope
of'the disclosure. Those skilled in the art will understand that
the principles of the present disclosure may be implemented
in any suitably arranged electronic devices. The foregoing
and other goals, features, and advantages of the present dis-
closure will be made more apparent from the following
description with reference to accompanying drawings, and
the technical concept of the present disclosure can be prac-
ticed by those skilled in the art. Detailed description of well-
known functions and structures incorporated herein may be
omitted to avoid obscuring the subject matter of the present
disclosure. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the disclosure. Unless otherwise defined, all
terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which this
disclosure pertains, and should not be interpreted as having an
excessively comprehensive meaning or as having an exces-
sively contracted meaning.

As used herein, the singular forms “a”, “an” and “the” are
intended to include the plural forms as well, unless the con-
text clearly indicates otherwise. It will be further understood
that the terms “comprises” “comprising,” “includes” and/or
“including” when used herein, specify the presence of stated
features, integers, steps, operations, elements, and/or compo-
nents, but do not preclude the presence or addition of one or
more other features, steps, operations, elements, components,
and/or groups thereof.

Exemplary embodiments of the present disclosure are
described with reference to the accompanying drawings in
detail.

In the following description, the virtual memory or virtual
memory device denotes a means to assigns virtual memory
addresses other than physical memory addresses to the pro-
grams.

An address assigned virtually is referred to as virtual
address or logical address, and the address on the physical
memory is referred to as physical address or real address.

In the present disclosure, the virtual address range may be
referred to as virtual address space, and the physical address
range as physical address space. The virtual address space is
the address used in view of process, and the virtual address
space is given per process.

The memory block may be a unit for use in splitting the
address space of Operating System or program arbitrarily. If
the memory size is fixed, this is referred to as page and,
otherwise, as segment.

In the present disclosure, the memory or memory unit as a
device may be referred to as physical memory in the opposite
meaning of virtual memory.

FIG. 1 is a diagram illustrating memory fragmentations.
Referring to FIG. 1, there is available memory of SM bytes.
The 5 Mbyte physical address space 100 can be split into 5
consecutive M-byte memory blocks 101, 102, 103, 104, and
105. In this case, the address space 101 has no available
memory. However, if a few memory blocks 102 and 104 are
released in this situation, the system can secure 2 Mbyte
available memory. However, although a program requests for
2 Mbyte memory allocation in this situation, the system can-
not process allocation request successfully. When the system
cannot processes the memory allocation request even though
the available memory is equal in size to or greater than the

20

25

30

40

45

55

4

allocation requested memory size, this state is referred to as a
memory fragmentation. The memory fragmentation is inevi-
table in the system allocating and releasing memory blocks
different in size over the time dynamically. There is therefore
a need of a method for solving the memory fragmentation
problem.

FIG. 2 is ablock diagram illustrating a configuration of the
electronic device according to an embodiment of the present
disclosure.

As shown in FIG. 2, the electronic device 200 according to
an embodiment of the present disclosure includes a control
unit 210, a memory 220, and a virtual memory management
unit 230. Although the virtual memory management unit is
depicted a component separated from the controlunit 210, the
relationship of the virtual memory management unit 230 and
the control unit 210 is not limited thereto but the virtual
memory management unit 230 can be included in the control
unit 210. In an embodiment of the present disclosure, the
electronic device 200 can be a communication terminal. In
the case that the electronic device 200 is a terminal supporting
a mobile communication function, it can further include a
radio communication unit. In order to support various func-
tions, the terminal can further include an input unit for gen-
erating input signals and an audio processing unit for collect-
ing and processing audio signals.

The above-structured electronic device operates such that
the control unit 210 performs a certain function according to
a user request or preset scheduling information. Particularly
according to an embodiment of the present disclosure, the
controlunit 210 can control the memory 220. The control unit
210 can control the memory and virtual memory. Controlling
the memory can include allocating and/or releasing memory
and loading data.

In the following description, the memory 220 can store and
load application programs and data required for supporting
functions. The application programs can include various pro-
cesses and applications, and the data can include data neces-
sary for the operation of the programs and generated by the
application programs.

The memory 220 is the area on which various programs are
loaded in association with the operation of the electronic
device 200. In order to store the programs, the electronic
device 200 can include a separate storage unit 230. The
memory 220 can include a space reserved for storing the
programs.

The virtual memory management unit 230 can include a
dynamic allocation memory generator 231, a location
checker 232, a state checker 233, a storage 234, a controller
235, a memory interface 236, and a memory manager 237.

The virtual memory management unit 230 can control the
virtual memory using the reference address on the dynamic
allocation memory region and the displacement of the refer-
ence address through Application Program Interface (API)
defined separately.

The dynamic allocation memory generator 231 generates
dynamic allocation memory using a means capable of allo-
cating memory dynamically like malloc() function of pro-
gramming language of C. In the case of generating the
dynamic allocation memory region using the reference
address and displacement of reference address, the dynamic
allocation memory generator 231 output the address of the
generated memory region address; and in the case of gener-
ating the dynamic allocation memory using a separately
defined API, the dynamic allocation memory generator 231
outputs a handle for the generated memory region.

The location checker 232 can be responsible for checking
the information on the location of the dynamic allocation

US 9,405,697 B2

5

memory region allocated dynamically in the memory space.
The dynamic location memory region is a part of a hip region
and is allocated while the application program is running, and
the location checker 20 can check the address of the dynamic
allocation memory region. The location checker 232 is acti-
vated in compiling the application program to check the loca-
tion information of the dynamic allocation memory region
and can be activated in the runtime of the application program
through an API defined separately to check the location infor-
mation of the dynamic allocation memory region.

Here, the location information of the dynamic allocation
memory region which is checked by the location checker 232
can include at least one of reference address of the dynamic
allocation memory region, displacement of reference
address, and physical memory address and size.

The state checker 233 is responsible for checking memory
usage rate, dynamic allocation memory region access right
state, dynamic allocation memory region task state, and Cen-
tral Processing Unit (CPU) usage rate.

The storage 234 can store at least one of dynamic allocation
memory region reference address, reference address dis-
placement, and physical memory address and size checked by
the location checker 232. Here, the displacement is set to a
value less than the size of the dynamic allocation memory
region. That is, the dynamic allocation memory region can be
referenced in correspondence to the reference address and
displacement. The storage unit 234 can be a module capable
of inputting and/or outputting information such as hard disk,
flash memory, Compact Flash (CF) card, Secure Digital (SD)
card, Smart Media (SM) card, Multimedia Card (MMC), and
Memory Stick, which is implemented inside or outside the
device.

The memory manager 237 performs memory management
operation according to the check result of the state checker
233. The memory manager 237 can store the reference
address of the dynamic allocation memory region, reference
address displacement, and physical memory address and size
changed in the process of management into the storage 234.

The memory interface 236 makes it possible to access the
dynamic allocation memory region managed by the memory
manager 270. The memory interface 236 can make it possible
to access the dynamic allocation memory by referencing the
reference address and displacement of the reference address
analyzed in compiling, the separately defined API included in
the memory interface 236 can access the dynamic allocation
memory region by referencing the physical memory address
and size of the dynamic allocation memory region.

In the above description, the virtual memory management
unit 230 has been made up of a plurality of blocks having
different functions. However, such a description has been
made for convenience and simplicity of explanation, but the
present disclosure is not limited thereto. For example, the
virtual memory management unit 230 can perform the func-
tions of the memory manager 237.

The virtual memory management unit 230 is described in
more detail hereinafter. In the present disclosure, the virtual
memory management unit 230 receives a memory allocation
request from a processor and maps the address value of the
memory to a consecutive primary virtual address space first.
In order to process a new memory allocation request in the
situation of a memory fragmentation, it can be possible to
map the address value of the primary virtual address to one of
the first and second secondary virtual address spaces sec-
ondly. At this time, the primary virtual address space and the
first and second secondary virtual address spaces can be equal
in size.

10

15

20

25

30

35

40

45

50

55

60

65

6

If memory fragmentation occurs, the virtual memory man-
agement unit 230 can move the active memory blocks of one
of the first and second secondary virtual address spaces,
which is used by the processor, to the other secondary virtual
address space. The active memory blocks can be moved so as
to be located consecutively. By locating consecutively, it is
possible to maximize the available memory space.

Ifthe consecutive available memory size in one of the first
and second secondary virtual address spaces, which is used
by the processor, is less than the memory size requested by the
processor, the virtual memory management unit 230 deter-
mines this as the memory fragmentation.

The virtual memory management unit 230 can change the
mapping relationship of the mapping table to move the active
memory block. In this case, the mapping relationship can be
changed to move the active memory block in such a way of
changing the secondary virtual address corresponding to the
active memory block but not changing the physical address
and the primary virtual address corresponding to the active
memory block to be moved. That is, the active memory block
moves through change of the virtual address mapping in the
first and second secondary virtual address spaces.

The virtual memory management unit 230 can move the
active memory block as follows. The virtual memory man-
agement unit 230 can check whether there is any active
memory block to move. If there is any active memory block to
move, the virtual memory management unit 230 determines a
new secondary virtual address for the active memory block. If
the secondary virtual address is determined, the virtual
memory management unit 230 moves links the new second-
ary virtual address to the primary virtual address of the cor-
responding memory block to move the active memory block.

The virtual memory management unit 230 can move the
active block in various ways. For example, it is possible to use
the least address value of the virtual space to which the active
block moves. That is, the virtual memory management unit
230 the least address value of unallocated memory in the
secondary virtual address space to which the active memory
block moves. Next, the virtual memory management unit 230
can determine the address value of the address space corre-
sponding to the returned address value as the new secondary
virtual address value. In the case of using this method, the
active memory blocks can be arranged consecutively from
position of the least address value. In this case, it is possible to
secure the available memory space as large as possible.

The virtual memory management unit 230 can manage a
mapping table. In order to process a memory allocation
request, the virtual memory management unit 230 can man-
age the mapping table. If a new memory allocation request is
received, the virtual memory management unit 230 can allo-
cate the memory of requested size and determine whether the
memory allocation request is an active memory block move-
ment request or a new memory allocation request. If the
request is the active memory block movement request, the
virtual memory management unit 230 can update the second-
ary virtual address mapping information in the mapping table.
Otherwise, if the request is the new memory allocation
request, the virtual memory management unit 230 can add a
physical address and first and secondary virtual address map-
ping information corresponding to the new memory block, to
the mapping table.

FIG. 3 is a diagram illustrating a memory management
scheme using virtual memory according to an embodiment of
the present disclosure. The virtual memory allocation method
of FIG. 3 maps the physical memory address of the hardware
to the virtual memory address space per process which uses
the virtual memory address space.

US 9,405,697 B2

7

Referring to FIG. 3, the 5-Mbyte physical address space
300 consists of 5 consecutive M-byte blocks 301, 302, 303,
304, and 305. Assuming that the blocks 301, 303, and 305 are
allocated (among the 5 consecutive M-byte blocks 301, 302,
303, 304, and 305), the memory blocks 301, 303, and 305
allocated inconsecutively can be shown as if consecutive in
the virtual address space 310 by adjusting the mapping the
physical address space 300 and the virtual address space 310.
In the case of mapping the physical address to the virtual
address space, a mapping table can be used. The mapping
table can include the information mapping the physical
address of the physical address space to the virtual memory of
the virtual address space. Using the mapping table, it is pos-
sible to acquire the physical address of the real memory from
the virtual address.

That is, the blocks 301, 303, and 305 are mapped to the
blocks 311, 313, and 315 respectively so as to be shown as
arranged consecutively. In this case, although the unallocated
memory of 2 Mbytes is fragmented in the physical address
space 310, the corresponding 2-Mbyte blocks are consecutive
in the virtual address space 310 as denoted by the reference
number 314. Accordingly, the memory allocation request for
1to 2 Mbytes that cannot be processed in the physical address
space, can be processed by securing 2-Mbyte consecutive
virtual memory space in use of the virtual memory technique.

The embodiment of FIG. 3 is capable of solving the
memory fragmentation problem to some extent. However, if
the memory fragmentation occurs again in the virtual address
space, it can fail to process the virtual memory allocation
request. For example, although 3-Mbyte unallocated virtual
memory space is secured by releasing the block 312 of the
virtual address space 310, the 3-byte unallocated memory
space is fragmented into 1-Mbyte block 213 and 2-byte block
314 so as notto fulfil the condition of processing any memory
block allocation request for 3 Mbytes successfully.

FIG. 4 is a diagram illustrating a concept of managing
memory in the virtual address space according to an embodi-
ment of the present disclosure.

FIG. 4 is directed to the method of managing the memory
with the configuration of the memory address space twice
larger than the memory space requested by a process and of
the virtual memory space address. The embodiment of FIG. 4
is capable of supplementing the virtual memory management
to solve the memory fragmentation in the virtual address
space.

According to an embodiment, the virtual memory manage-
ment unit can configure the memory address space twice
larger than the memory space requested by the process. The
process uses one half of the configured space at every moment
and, if memory fragmentation occurs in this half, moves the
active memory blocks in use to the other half. When moving
the active memory blocks, the system can position the active
memory blocks consecutive through appropriate mapping.
This makes it possible to prevent the unallocated memory
space of the other half from being fragmented. Once the
active memory blocks are moved to the other half; the process
uses only this new half memory space. If a memory fragmen-
tation occurs in the current half memory space in use, the
system moves the active blocks back to the other half memory
space again, and this operation is repeated to avoid memory
fragmentation in the virtual address space.

The embodiment of FIG. 4 is described in more detail
hereinafter. The system can configure two address spaces, i.e.
the first address region 400 and the second address arca 410
for one process. The first address area 400 can include the first
physical address apace 401 and the first virtual address space
403. The first physical address space 401 can correspond to

10

15

20

25

30

35

40

45

50

55

60

65

8

the first virtual address space 403. The second address region
401 can include the second physical address space 411 and
the second virtual address space 413. The second virtual
address space 413 can be equal in size to the first virtual
address space 403. The second physical address space 411
can correspond to the second virtual address space.

A description is made the operation before the occurrence
of collection. The process processes a memory block alloca-
tion request using the first virtual address space 403 of the first
address region 400 upon start of the process. In this case, the
process does not use the second address region 410. In the
course of allocating and releasing the memory blocks of
different sizes repeatedly in the first address region 400, the
active memory blocks can be arranged inconsecutively. In
FIG. 4, ifthe process requests for 2-Mbyte memory amount in
state that 2-Mbyte unallocated memory space exists in the
first virtual address space 403 at the time before the collec-
tion, it is likely to fail to process the request. This is because
the unallocated memory blocks are not consecutive in the first
virtual address space 403. The system can determine this
situation as occurrence of fragmentation in the first address
region 400.

If it is determined that a fragmentation has occurred, the
system can move the active blocks of the first address region
400 to the second address region 410. This process for the
system to check the active blocks of the first address region
400 and move them to the second address region can be called
collection. The collection process can be performed in such a
way of copying data from the first physical address space 401
to the second physical address space and mapping the
memory blocks to the second virtual address space 413 cor-
responding to the second physical address space 411.

If the collection is done, the process stops using the first
address space 400 and starts using the second address space
410. Through the collection process, it is possible to arrange
the active blocks consecutively in the second virtual address
space 413 of the second address region 410. In this embodi-
ment, 2-Mbyte available memory space is secured in the
second virtual address space 413 through the collection pro-
cess so as to process the 2-Mbyte memory block allocation
request successfully. In the case that the process performs
allocating and releasing the memory blocks of different sizes
repeatedly, a fragmentation can occur again in the second
virtual address space 413. In this case, the system can moves
the active blocks of the second address region 410 to the first
address region 400 through the collection process. As
described above, it is possible to solve the fragmentation
problem in the virtual address space by repeating transfer of
the active blocks from one address region in which fragmen-
tation occurs to the other address region not in use.

FIG. 5 is a diagram illustrating a concept of memory man-
agement method using 2-step virtualization according to an
embodiment of the present disclosure.

The embodiment of FIG. 5 is directed to the method of
overcoming the memory fragmentation problem more effi-
ciently. In the embodiment of FIG. 4, the memory size used
instantaneously by the process is equal to that of the first
address region 400, but the memory space of the second
address region 410 has to be reserved always for use by the
process. This means that the half of the entire memory space
is reserved for the process without memory block allocation,
resulting in a resource waste.

It can take a long time to move the data of the first physical
address space 401 to the second physical address space 411
due to the direct memory access operation. The embodiment
of FIG. 5 is capable of reducing the active block movement
time by negating the direct memory access operation as well

US 9,405,697 B2

9

as by avoiding the unnecessary waste of the physical address
space using the 2-step virtualization and the active block
movement process.

A description is made of the virtual address space configu-
ration method using the 2-step virtualization with reference to
FIG. 5. In this embodiment, if the process requests for N-byte
virtual address space, the Operating System (OS) can map the
N-byte address value of the physical address space 500 to the
N-byte primary virtual address space 510. The primary vir-
tual address space 510 can be consecutive address spaces. The
method of mapping the physical address space 500 to the
primary virtual address space 510 can be performed as
described with reference to FIG. 3.

The address value of the N-byte primary virtual address
space 51 can be mapped to the 2N-Byte secondary virtual
address space 520. The secondary virtual address space 520
can include two consecutive N-Byte address spaces 521 and
522. An address of the primary virtual address space 510 can
be mapped to an address of one of the first and second sec-
ondary virtual address spaces 521 and 522 under the control
of'the virtual memory management unit or the virtual address
mapper.

The process requesting for memory can allocate and/or
release memory blocks necessary for operation using one of
the first and second secondary virtual address spaces 521 and
522. The process can use one of the first and second secondary
virtual address spaces 521 and 522 ata given time. This means
that the only one of the first and second secondary address
spaces 521 and 522 is used. That is, the process can switch
between the first and second secondary virtual address spaces
521 as time progresses. The process uses one of the first and
second secondary virtual address spaces selectively, but do
not use the both simultaneously.

If a fragmentation occurs in one (which is in use) of the two
secondary virtual address spaces 521 and 522, the active
memory blocks of the virtual address space in use is moved to
the other virtual address space through consecutive mapping
such that the fragmentation is resolved. In the active memory
block movement process according to an embodiment of the
present disclosure, the address of the secondary virtual
address space 520 can be changed but the addresses of the
physical address space 500 and the primary virtual address
space 510 are not changed.

A description is made of the method of mapping active
memory in the 2-step virtualized space with reference to
FIGS. 6 and 7. FIG. 6 is a diagram illustrating a concept of the
active block mapping method of FIG. 5, and FIG. 7 is a
diagram illustrating a mapping table for use in the embodi-
ment of FIG. 6.

In the case that the process needs N-byte virtual address
space, the OS can map the N-byte physical address space 600
to the N-byte primary virtual address space 610. The address
value of the N-byte primary virtual address space 610 can be
mapped to the 2N-byte secondary virtual address space 620
again. The secondary virtual address space 620 can include
two consecutive N-byte address spaces 621 and 622.

The mapping relationship among the physical address
space 600 and the primary and second virtual address spaces
610 and 620 is arranged in the mapping table of FIG. 7. The
mapping table maps the virtual addresses and the physical
addresses. In order for the process to access a specific
memory, the OS has to convert the virtual address of the
process to the memory address of the system. Accordingly,
the mapping table is configured per process.

Referring to the mapping table of FIG. 7, the physical
address 601 of FIG. 6 is mapped to the primary virtual address
611, the physical address 603 to the primary virtual address

10

15

20

25

30

35

40

45

50

55

60

65

10

613, and the physical address 605 to the primary virtual
address 615. The primary virtual address of the primary vir-
tual address space 610 is mapped to the secondary virtual
address a, the primary virtual address 613 to the secondary
virtual address 611, and the primary virtual address 615 to the
secondary virtual address e. In this case, the second second-
ary virtual address space 622 is not used in address-mapping
of the primary virtual address space 610.

The process can allocate and/or release memory block
necessary for operation using the first secondary virtual
address space 621. The process can detect the fragmentation
of the address space in use of the secondary virtual address
space. In this case, the process can switch the roles of the first
and second virtual address spaces 621 and 622. That is, if it is
determined that the first secondary virtual address space 621
is fragmented in use, the process performs collection process
to move the active blocks of the first secondary virtual address
space 621 to the second secondary virtual address space 622.
At this time, the active memory blocks can be transferred so
as to be arranged consecutively in the second secondary vir-
tual address space 622. If the collection process is performed
to switch the roles of the first and second secondary virtual
address spaces, the secondary virtual addresses are changed
without change of the memory addresses of the active
memory blocks and the primary virtual addresses.

Referring to the mapping table of FIG. 7, the physical
addresses 601, 603, and 605 and the primary virtual addresses
611, 613, and 615 are not changed, but the secondary virtual
address corresponding to the primary virtual address 611 can
change to ‘A’, the secondary virtual address corresponding to
the primary virtual address 613 to ‘B’, and the secondary
virtual address corresponding to the primary virtual address
615 to ‘C’. The memory blocks ‘A’, ‘B’, and ‘C’ can be
arranged consecutively in the second secondary virtual
address space through the collection process. Although it can
be impossible to process the memory allocation request of the
process in the first secondary virtual address space 621 due to
the fragmentation, the memory blocks can be arranged con-
secutively through the collection process so as to resolve the
fragmentation and process the memory allocation request of
the process. In the case that the fragmentation occurs in the
secondary virtual address space, the active blocks are moved
to the other secondary virtual address space in a consecutive
mapping manner so as to resolve the fragmentation problem
in the virtual address space.

In the embodiment of FIGS. 5 and 6, any data movement
requiring relatively a long time does not occur in the physical
address space because there is no change in physical address
space. The process can access the memory block of the physi-
cal address space using the new secondary virtual address of
the memory blocks.

FIG. 8 is a flowchart illustrating the memory management
method based on the concept depicted in FIG. 5.

The electronic device using the virtual memory technique
receives a memory allocation request from a process at opera-
tion 5801. The memory allocation request can be of C lan-
guage. In an embodiment, malloc() function can be used for
memory allocation request. The function can vary dependent
on the memory module, e.g. malloc() and farmalloc() func-
tions for memory allocation, realloc() function for memory
reallocation, and free() or farfree() function for memory
release. If N-byte virtual memory allocation request is
received from the process, the virtual memory management
unit can map the address value of the N-byte physical address
space to the N-byte primary virtual address space at operation
5803. In this case, the primary virtual address space can be
consecutive N-byte virtual address space.

US 9,405,697 B2

11

The virtual memory management unit can map the address
value of the N-byte primary virtual address space to the
2N-byte secondary virtual address space again to resolve the
memory fragmentation at operation 5805. The secondary vir-
tual address space can consist of two consecutive N-byte
address spaces. The address value of the primary virtual
address space can be mapped to one of the first and second
secondary virtual address spaces. The memory space to
which the primary virtual address space is mapped is deter-
mined by the virtual memory management unit. However, the
process can use only one of the first and second secondary
virtual address spaces both not use both the two secondary
virtual address spaces.

The process of allocating/releasing memory blocks neces-
sary for operation using one the first or second secondary
virtual address space can determine whether the secondary
virtual address space in use is fragmented at operation S807.
If the size of the unallocated consecutive memory blocks in
one of the first and second secondary virtual address spaces is
less than the size of the memory block requested by the
process, it is impossible to process the memory allocation
successfully an thus the process determines that the memory
is fragmented.

If the process determines that the memory is fragmented,
the virtual memory management unit can move the active
blocks of the secondary virtual address space to other sec-
ondary virtual address space at operation S809. In more
detail, the virtual memory management unit can move the
active memory blocks used by the process currently in one of
the first and second secondary virtual address spaces to the
other secondary virtual address space not in use. In the case of
moving the active memory blocks, the active memory blocks
can be rearranged consecutively to secure the memory space
available as large as possible for the purpose of resolving a
fragmentation.

If a memory allocation request is received in the state of no
memory fragmentation, it is possible to allocate memory in
the secondary virtual address space in use currently at opera-
tion S811.

That is, in this embodiment, the process uses one of the first
and second secondary virtual address spaces at a time and
thus, if fragmentation occurs in the memory space in use
currently, it is possible to move the active blocks to the other
memory space, resulting in resolution of memory fragmen-
tation. At this time, only the virtual address of the secondary
virtual address space to which the active blocks move without
change of the physical address and the first virtual address of
the memory blocks. Since only the mapping relationship
between the primary and secondary virtual addresses is
changed due to the change of the secondary virtual address
without change of the physical and the primary virtual
address, it is possible to manage the memory through simpli-
fied operation.

FIG. 9 is a flowchart illustrating a procedure of moving
active blocks in the memory management method of FIG. 8.

If it is determined that the secondary virtual address space
in use by the process is fragmented, the virtual memory
management unit can move the active memory blocks of the
secondary virtual address space in use currently to the other
secondary virtual address space not in use.

The virtual memory management unit can determine
whether any active memory block exists in the secondary
virtual address space in use by the process currently at opera-
tion S901, Ifthe first secondary virtual address space is in use
but the second secondary virtual address space is not in use,

10

15

20

25

30

35

40

45

50

55

60

65

12

the virtual memory management unit determines that the
active memory block exists in the first secondary virtual
address space.

Next, the virtual memory management unit can determine
a new address of the second secondary virtual address space
for the active memory blocks to lie in the second secondary
virtual address space at operation S903. The active memory
block address determination can be performed in such a way
ofreturning the least address value of the space unallocated in
the secondary virtual address space to which the active
memory blocks move and determining the address value of
the virtual address space corresponding to the returned
address value as new secondary virtual address value. How-
ever, the active memory block address determination is not
limited to the above described embodiment.

If the secondary virtual address is determined, the virtual
memory management unit maps the primary virtual address
of the corresponding block to the new address at operation
S905.

FIG. 101s a flowchart illustrating the memory management
method when new memory allocation request is received in
the memory management concept of FIG. 5.

The process can request for memory allocation newly in
use of the secondary virtual address space. The virtual
memory management unit can receive a memory allocation
request from the process at operation S1001. Upon receipt of
the memory allocation request, the virtual memory manage-
ment unit can allocate the block having the least address value
among the unallocated memory blocks having the size greater
than the requested memory size to the process at operation
S1003. The virtual memory management unit can determine
whether the memory allocation request from the process is a
request for moving the active blocks of the secondary virtual
address space in use to the other secondary virtual address
space not in use or the request for new memory allocation at
operation S1005.

If the request is of moving the active blocks, the virtual
memory management unit can update the secondary virtual
address mapping information in the mapping table at opera-
tion S1007. FIG. 7 can be directed to an embodiment of
updating the secondary virtual address mapping information
in the mapping table. FIG. 7 shows the change in the mapping
table when the active blocks of the first secondary virtual
address space move to the second secondary virtual address
space. Referring to FIG. 7, when the mapping information is
updated, the secondary virtual addresses are changed without
change of the physical address and the primary virtual
addresses.

If the request is of new memory allocation, the virtual
memory management unit can register the physical address
and the primary and secondary virtual addresses correspond-
ing to the new memory block with the mapping table at
operation S1009. That is, when a new memory allocation
request is received, there is not physical and primary virtual
address corresponding to the memory block requested for
allocation, it is necessary to add mapping information among
the physical address and the primary and secondary virtual
addresses corresponding to the new memory block to the
mapping table.

As described above, the memory management method and
apparatus of the present disclosure is capable of allowing the
memory blocks to lie consecutively in the virtual address
space. Inthis way, the virtual address spaces switch their roles
whenever memory fragmentation occurs so as to solve the
memory fragmentation problem.

Also, the memory management method and apparatus of
the present disclosure is advantageous in terms of solving a

US 9,405,697 B2

13

memory fragmentation by moving the active memory block
through simple operation of changing secondary virtual
address mapping on in the virtual address space.
Also, the memory management method and apparatus of
the present disclosure is advantageous in terms of using the
memory efficiently by avoiding unnecessary waste of physi-
cal address space.
Although the present disclosure has been described with an
exemplary embodiment, various changes and modifications
may be suggested to one skilled in the art. It is intended that
the present disclosure encompass such changes and modifi-
cations as fall within the scope of the appended claims.
What is claimed is:
1. A memory management method of an electronic device,
the method comprising:
receiving a memory allocation request for data;
allocating physical address space of a memory space to the
data in response to the memory allocation request;

mapping address values of the memory allocated in the
physical address space to a consecutive primary virtual
address space; and

mapping the address values of the primary virtual address

space to one of a first and second secondary virtual
address spaces to process a next memory allocation
request in a situation where a memory fragmentation
occurs.

2. The method of claim 1, wherein the physical address
space, the primary virtual address space, the first secondary
virtual space, and the second secondary virtual space are
identical in size.

3. The method of claim 1, further comprising:

moving, when the memory fragmentation occurs, active

memory blocks of the one of the first and second sec-
ondary virtual address spaces, the one which is in use, to
the other secondary virtual address space not in use
currently.

4. The method of claim 3, further comprising:

determining, when a consecutive memory size unallocated

in the virtual address space used by a process is less than
a memory size requested by the process, that the
memory is fragmented.

5. The method of claim 3, wherein moving the active
memory blocks comprises:

changing the secondary virtual address without change of

physical address and first virtual address corresponding
to the active memory blocks.

6. The method of claim 3, wherein moving the active
memory blocks comprises:

checking whether an active memory block exists;

determining, when the active memory block exists, a new

secondary virtual address necessary for moving the
checks active memory block; and

mapping, when the new address is determined, the new

virtual address to the primary virtual address of the
corresponding memory block.

7. The method of claim 6, wherein determining the new
secondary virtual address comprises:

returning a least address value of memory unallocated in

the secondary virtual address space to which the active
memory block is moved; and

determining the address value of the address space corre-

sponding to the returned address value as a new second-
ary virtual address value.

8. The method of claim 3, further comprising:

allocating, when the next memory allocation request is

received, a memory with a size requested in the next
memory allocation request; and

10

20

25

30

35

40

45

50

55

60

65

14

determining whether the memory allocation request is an
active memory block transfer request or the next
memory allocation request.

9. The method of claim 8, further comprising:

updating, when the memory allocation request is the active

memory block transfer request, the secondary virtual
address mapping information in the mapping table.

10. The method of claim 8, further comprising:

adding, when the memory allocation request is the next

memory allocation request, the mapping information on
the physical address and the first and second virtual
addresses corresponding to the new memory block, to
the mapping table.

11. An electronic device having a memory, the electronic
device comprising:

a memory unit configured to store at least one data; and

a controller configured to:

receive a memory allocation request for the data;

allocate a physical address space of a memory to the data
in response to the memory allocation request;

map address values of the memory allocated in the
physical address space to a consecutive primary vir-
tual address space; and

map the address values of the primary virtual address
space to one of a first and second secondary virtual
address spaces to process a next memory allocation
request in a situation where a memory fragmentation
occurs.

12. The electronic device of claim 11, wherein the primary
virtual address space, the first secondary virtual space, and
the second secondary virtual space are identical in size.

13. The electronic device of claim 12, wherein the control-
ler is configured to:

return a least address value of memory unallocated in the

secondary virtual address space to which the active
memory block is moved, and

determine the address value of the address space corre-

sponding to the returned address value as a new second-
ary virtual address value.

14. The electronic device of claim 11, wherein the control-
ler is configured to move, when the memory fragmentation
occurs, active memory blocks of the one of the first and
second secondary virtual address spaces, the one which is in
use, to the other secondary virtual address space not in use
currently.

15. The electronic device of claim 14, wherein the control-
ler is configured to determine, when a consecutive memory
size unallocated in the virtual address space used by a process
is less than a memory size requested, that the memory is
fragmented.

16. The electronic device of claim 14, wherein the control-
ler is configured to change the secondary virtual address
without a change of physical addresses and first virtual
address corresponding to the active memory blocks.

17. The electronic device of claim 14, wherein the control-
ler is configured to

check whether an active memory block exists,

determine, when any active memory block exists, a new

secondary virtual address necessary for moving the
active memory block, and

maps, when the new address is determined, the new virtual

address to the primary virtual address of the correspond-
ing memory block.

18. The electronic device of claim 14, wherein the control-
ler is configured to:

US 9,405,697 B2
15

allocate, when a next memory allocation request is
received, a memory with the size requested in receiving
the new memory allocation request, and
determine whether the memory allocation request is an
active memory block transfer request or new memory 5
allocation request.
19. The electronic device of claim 14, wherein the control-
ler is configured to update, when the memory allocation
request is the active memory block transfer request, the sec-
ondary virtual address mapping information in the mapping 10
table.
20. The electronic device of claim 14, wherein the control-
ler is configured to add, when the memory allocation request
is the new memory allocation request, the mapping informa-
tion on the physical address and the first and second virtual 15
addresses corresponding to the new memory block to the
mapping table.

